1 Some Facts on Symmetric Matrices

Definition: Matrix A is symmetric if $A = A^T$.

Theorem: Any symmetric matrix
1) has only real eigenvalues;
2) is always diagonalizable;
3) has orthogonal eigenvectors.

Corollary: If matrix A then there exists $Q^TQ = I$ such that $A = Q^T \Lambda Q$.

Proof:
1) Let $\lambda \in \mathbb{C}$ be an eigenvalue of the symmetric matrix A. Then $Av = \lambda v$, $v \neq 0$, and

 \[v^*Av = \lambda v^*v, \quad v^* = \bar{v}^T. \]

 But since A is symmetric

 \[\lambda v^*v = v^*Av = (v^*Av)^* = \bar{\lambda}v^*v. \]

 Therefore, λ must be equal to $\bar{\lambda}$!

2) If the symmetric matrix A is not diagonalizable then it must have
 generalized eigenvalues of order 2 or higher. That is, for some repeated
 eigenvalue λ_i there exists $v \neq 0$ such that

 \[(A - \lambda_i I)^2v = 0, \quad (A - \lambda_i I)v \neq 0 \]

 But note that

 \[0 = v^*(A - \lambda_i I)^2v = v^*(A - \lambda_i I)(A - \lambda_i I) \neq 0, \]

 which is contradiction. Therefore, as there exists no generalized eigenvectors
 of order 2 or higher, A must be diagonalizable.

3) As A must have no generalized eigenvector of order 2 or higher

 $AT = A \left[v_1 \cdots v_n \right] = \left[v_1 \cdots v_n \right] \Lambda = T\Lambda, \quad |T| \neq 0.$

 That is $A = T^{-1}\Lambda T$. But since A is symmetric

 $T^{-1}\Lambda T = A = A^T = (T^{-1}\Lambda T)^T = T^T\Lambda T^{-T} \quad \Rightarrow \quad T^T = T^{-1}$

 or

 $T^T T = I \quad \Rightarrow \quad v_i^T v_i = 1, \quad v_i^T v_j = 0, \forall i \neq j.$
1.1 Positive definite matrices

Definition: The symmetric matrix A is said positive definite ($A > 0$) if all its eigenvalues are positive.

Definition: The symmetric matrix A is said positive semidefinite ($A \geq 0$) if all its eigenvalues are non-negative.

Theorem: If A is positive definite (semidefinite) there exists a matrix $A^{1/2} > 0$ ($A^{1/2} \geq 0$) such that $A^{1/2}A^{1/2} = A$.

Proof: As A is positive definite (semidefinite)

\[
A = Q^T \Lambda Q, \quad Q^T Q = QQ^T = I \\
= Q^T \Lambda^{1/2} \Lambda^{1/2} Q, \quad \Lambda^{1/2}_{ii} = \sqrt{\lambda_i} \\
= \underbrace{Q^T \Lambda^{1/2} Q}_{A^{1/2}} \underbrace{Q^T \Lambda^{1/2} Q}_{A^{1/2}},
\]

Theorem: A is positive definite if and only if $x^T Ax > 0, \quad \forall x \neq 0$.

Proof:

Assume there is $x \neq 0$ such that $x^T Ax \leq 0$ and A is positive definite. Then there exists $Q^T Q = I$ such that $A = Q^T \Lambda Q$ with $\Lambda_{ii} = \lambda_i > 0$. Then for $y \neq 0$ such that $x = Q^T y$

\[
0 \geq x^T Ax = y^T QAQy = y^T QQ^T \Lambda QQ^T y = y^T \Lambda y = \sum_{i=1}^{n} \lambda_i y_i^2 \geq 0
\]

which is a contradiction.
2 Controllability Gramian

LTI system in state space
\[
\dot{x}(t) = Ax(t) + Bu(t), \\
y(t) = Cx(t)
\]

Problem: Given \(x(0) = 0 \) and any \(\bar{x} \), compute \(u(t) \) such that \(x(\bar{t}) = \bar{x} \) for some \(\bar{t} > 0 \).

Solution: We know that
\[
\bar{x} = x(\bar{t}) = \int_{0}^{\bar{t}} e^{A(\bar{t} - \tau)} Bu(\tau) d\tau.
\]

If we limit our search for solutions \(u \) in the form
\[
u(t) = B^{T} e^{A^{T}(\bar{t} - t)} \bar{z}
\]
we have
\[
\bar{x} = \int_{0}^{\bar{t}} e^{A(\bar{t} - \tau)} BB^{T} e^{A^{T}(\bar{t} - \tau)} \bar{z} d\tau,
\]
\[
= \left(\int_{0}^{\bar{t}} e^{A(\bar{t} - \tau)} BB^{T} e^{A^{T}(\bar{t} - \tau)} d\tau \right) \bar{z}, \quad \xi = \bar{t} - \tau
\]
\[
= \left(\int_{0}^{\bar{t}} e^{A\xi} BB^{T} e^{A^{T}\xi} d\xi \right) \bar{z},
\]
and
\[
\bar{z} = \left(\int_{0}^{\bar{t}} e^{A\xi} BB^{T} e^{A^{T}\xi} d\xi \right)^{-1} \bar{x},
\]
\[
\Rightarrow \quad u(t) = B^{T} e^{A^{T}(\bar{t} - t)} \left(\int_{0}^{\bar{t}} e^{A\xi} BB^{T} e^{A^{T}\xi} d\xi \right)^{-1} \bar{x}
\]
The symmetric matrix
\[
X(t) := \int_{0}^{t} e^{A\xi} BB^{T} e^{A^{T}\xi} d\xi
\]
is known as the **Controllability Gramian**.

MAE 280A 3 Maurício de Oliveira
2.1 Properties of the Controllability Gramian

Theorem: The Controllability Gramian

\[X(t) = \int_{0}^{t} e^{A\xi} BB^{T} e^{A^{T}\xi} d\xi, \]

is the solution to the differential equation

\[\frac{d}{dt} X(t) = AX(t) + X(t)A^{T} + BB^{T}. \]

If \(X = \lim_{t \to \infty} X(t) \) exists then

\[AX + XA^{T} + BB^{T} = 0. \]

Proof: For the first part, compute

\[
\frac{d}{dt} X(t) = \frac{d}{dt} \int_{0}^{t} e^{A\xi} BB^{T} e^{A^{T}\xi} d\xi = \frac{d}{dt} \int_{0}^{t} e^{A(t-\tau)} BB^{T} e^{A^{T}(t-\tau)} d\tau, \\
= \int_{0}^{t} \frac{d}{d\tau} e^{A(t-\tau)} BB^{T} e^{A^{T}(t-\tau)} + e^{A(t-\tau)} BB^{T} e^{A^{T}(t-\tau)} \big|_{\tau=t}, \\
= A \left(\int_{0}^{t} e^{A(t-\tau)} BB^{T} e^{A^{T}(t-\tau)} d\tau \right) \\
+ \left(\int_{0}^{t} e^{A(t-\tau)} BB^{T} e^{A^{T}(t-\tau)} d\tau \right) A^{T} + BB^{T}, \\
= AX(t) + X(t)A^{T} + BB^{T}.
\]

For the second part, use the fact that \(X(t) \) is smooth and therefore

\[
\lim_{t \to \infty} X(t) = X \quad \Rightarrow \quad \lim_{t \to \infty} \frac{d}{dt} X(t) = 0.
\]
2.2 Summary on Controllability

Theorem: The following are equivalent

1) The pair \((A, B)\) is controllable;

2) The Controllability Matrix \(C(A, B)\) has full-row rank;

3) There exists no \(z \neq 0\) such that \(z^* A = \lambda z, \quad z^* B = 0\);

4) The Controllability Gramian \(X(t)\) is positive definite for some \(t \geq 0\).

Proof:
Everything has already been proved except the equivalence of 4).

* Sufficiency: Immediate from the construction of \(u(t)\).

* Necessity: First part:

\[
X(t) = \int_0^t e^{A\xi} B B^T e^{A^T \xi} d\xi \geq 0
\]

by construction. We have to prove that when \((A, B)\) is controllable then \(X(t) > 0\). To prove this assume that \((A, B)\) is controllable but \(X(t)\) is not positive definite. So there exists \(z \neq 0\) such that

\[
z^* e^{A\tau} B = 0, \quad \forall 0 \leq \tau \leq t.
\]

But this implies

\[
\frac{d^i}{d\tau^i}(i! \, z^* e^{A\tau} B) \bigg|_{\tau=0} = z^* A^i e^{A\tau} B \bigg|_{\tau=0} = z^* A^i B = 0, \quad i = 0, \ldots, n - 1
\]

which implies \(C(A, B)\) does not have full-row rank (see proof of the Popov-Belevitch-Hautus Test).
3 Observability Gramian

LTI system in state space

\[
\dot{x}(t) = Ax(t) + Bu(t), \\
y(t) = Cx(t)
\]

Problem: Given \(u(t) = 0\) and \(y(t)\) compute \(x(0)\).

Solution: We know that

\[y(t) = C e^{At} x(0).\]

Multiplying on the left by \(e^{AT} C^T\) and integrating from 0 to \(t\) we have

\[
\int_0^t e^{AT} C^T y(\xi) d\xi = \left(\int_0^t e^{AT} C^T C e^{A\xi} d\xi \right) x(0)
\]

from which

\[
x(0) = \left(\int_0^t e^{AT} C^T C e^{A\xi} d\xi \right)^{-1} \int_0^t e^{AT} C^T y(\xi) d\xi.
\]

The symmetric matrix

\[
Y(t) := \int_0^t e^{AT} C^T C e^{A\xi} d\xi
\]

is known as the **Observability Gramian**.
3.1 Properties of the Observability Gramian

Theorem: The Observability Gramian

\[Y(t) = \int_0^t e^{A_T \xi} C^T C e^{A \xi} d\xi, \]

is the solution to the differential equation

\[\frac{d}{dt} Y(t) = A^T Y(t) + Y(t) A + C^T C. \]

If \(Y = \lim_{t \to \infty} X(t) \) exists then

\[A^T Y + YA + C^T C = 0. \]

3.2 Summary on Observability

Theorem: The following are equivalent

1) The pair \((A, C)\) is observable;

2) The Observability Matrix \(\mathcal{O}(A, C) \) has full-column rank;

3) There exists no \(x \neq 0 \) such that \(Ax = \lambda x, \quad Cx = 0; \)

4) The Observability Gramian \(Y = Y(t) \) is positive definite for some \(t \geq 0. \)
Lemma: Consider the Lyapunov Equation

\[A^T X + XA + C^T C = 0 \]

where \(A \in \mathbb{C}^{n \times n} \) and \(C \in \mathbb{C}^{m \times n} \).

1. A solution \(X \in \mathbb{C}^{n \times n} \) exists and is unique if and only if \(\lambda_j(A) + \lambda_i^*(A) \neq 0 \) for all \(i, j = 1, \ldots, n \). Furthermore \(X \) is symmetric.

2. If \(A \) is Hurwitz then \(X \) is positive semidefinite.

3. If \((A, C) \) is detectable and \(X \) is positive semidefinite then \(A \) is Hurwitz.

4. If \((A, C) \) is observable and \(A \) is Hurwitz then \(X \) is positive definite.

Proof:

Item 1. The Lyapunov Equation is a linear equation and it has a unique solution if and only if the homogeneous equation associated with the Lyapunov equation admits only the trivial solution. Assume it does not, that is, there \(\bar{X} \neq 0 \) such that

\[A^T \bar{X} + \bar{X}A = 0 \]

Then, multiplication of the above on the right by \(x_i^* \neq 0 \), the \(i \)th eigenvector of \(A \) and on the right by \(x_j^* \neq 0 \) yields

\[0 = x_i^* A^T \bar{X} x_j + x_j^* \bar{X} A x_i = [\lambda_j(A) + \lambda_i^*(A)] x_i^* \bar{X} x_j. \]

Since \(\lambda_i(A) + \lambda_j(B) \neq 0 \) by hypothesis we must have \(x_i^* \bar{X} x_j = 0 \) for all \(i, j \).

One can show that this indeed implies \(\bar{X} = 0 \), establishing a contradiction. That \(X \) is symmetric follows from uniqueness since

\[0 = (A^T X + XA + C^T C)^T - (A^T X + XA + C^T C) \]
\[= A^T (X^T - X) + (X^T - X) A \]

so that \(X^T - X = 0 \).

Item 2. If \(A \) is Hurwitz then \(\lim_{t \to \infty} e^{At} = 0 \). But

\[X = \int_0^\infty e^{A^T t} C^T C e^{At} dt \geq 0 \]

and

\[A^T X + XA = \lim_{t \to \infty} \int_0^\infty \frac{d}{dt} e^{A^T t} C^T C e^{At} dt = e^{A^T t} C^T C e^{At} \bigg|_0^\infty = -C^T C. \]
4 Controllability, Observability and Duality

Primal LTI system in state space

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t), \\
y(t) &= Cx(t)
\end{align*}
\]

Dual LTI system in state space

\[
\begin{align*}
\dot{x}(t) &= A^T x(t) + C^T u(t), \\
y(t) &= B^T x(t).
\end{align*}
\]

The primal system is observable if and only if the dual system is controllable. The primal system is controllable if and only if the dual system is observable.